Chapter 7

Group Theory

- 1. In the following determine whether the systems described are groups. If they are not, point out which of the group axioms fail to hold.
 - (a) $G = set of all integers, a.b \equiv a b$
 - (b) G = set of all positive integers, a.b = ab, the usual product of integers.
 - (c) $G = a_0, a_1, \dots, a_6$ where $a_i.a_j = a_{i+j}$ if i + j < 7, $a_i.a_j = a_{i+j-7}$ if $i + j \ge 7$, (for instance, $a_5.a_4 = a_{5+4-7} = a_2$ since 5 + 4 = 9 > 7)
 - (d) G set of all rational numbers with odd denominators, $a.b\equiv a-b$, the usual addition of rational numbers.
- 2. Prove that if G is an abelian group, then for all $a, b \in G$ and all integers n $(a.b)^n = a^n.b^n$
- 3. If G is a group such that $(a.b)^2 = a^2.b^2$ for all $a, b \in G$, show that G must be abelian.
- 4. If G is a finite group, show that there exists a positive integer N such that $a^N = e$ for all $a \in G$.
- 5. Show :
 - (a) If the group G has three elements, show it must be abelian.
 - (b) Do part (a) if G has four elements.
 - (c) Do part (a) if G has five elements.
- 6. Show that if every element of the group G is its own inverse, then G is abelian.
- 7. If G is a group of even order, prove it has an element $a \neq e$ satisfying $a^2 = e$.

- 8. Suppose a finite set G is closed under an associative product and that both cancellation laws hold in G. Prove that G must be a group.
- 9. If H and K are subgroups of G, show that $H\cap K$ is a subgroup of G.
- 10. Prove that if G is a group and $x^2 = 1$ for all $x \in G$, then G is abelian.

For GATE CS video lectures visit www.thegatebook.in Our Previous Ranks : 9,14,16,19,33,48....