Let "Closure of a Relation R with respect to a Property P" be defined as follows:

let R be a relation on a set A. Then a relation R' is the closure of the relation R with respect to property P if and only if

1. R' satisfy the property P, and

2. , and

3. for any(every) relation R'' if and satisfies the property R, then

i.e if there is a relation R' with property P containing R such that R' is a subset of every relation R'' with property P containing R, then R' is called the closure of R with repect to P

Let relation R on a set

Let the property "P" be "has an odd number of elements".

The closure of R with respect to property P is :

(A).

(B).

(C).

(D). None of these