Basis maths-linear algebra-Q20

+1 vote

Let P be a 2\times 2 matrix for which there is a constant k such that the sum of entries in each row and each column is k. Which of the following must be an eigenvector of A

(1)\begin{bmatrix} 1\\ 0 \end{bmatrix}             (2)\begin{bmatrix} 0\\ 1 \end{bmatrix}           (3)\begin{bmatrix} 1\\ 1 \end{bmatrix}

(A). {\text{(1) only}}

(B). {\text{(2) only}}

(C). {\text{(3) only}}

(D). {\text{(1) and (2) only}}

asked May 15 in Basic Maths by gbeditor (44,560 points)
reshown May 16 by gbeditor

1 Answer

0 votes
 
Best answer

If K be the sum of each row and column then we get \begin{bmatrix} 1 \\ 1 \end{bmatrix}  as a eigen vector with respect to eigen value k.

For example, let

A_{3\times 3} = \begin{bmatrix} 1 & 2 &3 \\ 2 & 3 & 1\\ 3 & 1 & 2 \end{bmatrix}

Here, sum of each row & column is 6 ,one of the eigen values of matric A is 6

since the characteristic equation of A is \lambda^3-6\lambda^2-3\lambda + 18 = 0

\begin{bmatrix} 1 &2 &3 \\ 2&3 &1 \\ 3& 1 &2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}= \begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix}

\begin{bmatrix} 1 &2 &3 \\ 2&3 &1 \\ 3& 1 &2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}= 6\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}

option C

answered Jun 11 by deepak-gatebook (112,760 points)
Answer:
...